Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Allelic variation in a cellulose synthase gene (PtoCesA4) associated with growth and wood properties in Populus tomentosa.

Identifieur interne : 002803 ( Main/Exploration ); précédent : 002802; suivant : 002804

Allelic variation in a cellulose synthase gene (PtoCesA4) associated with growth and wood properties in Populus tomentosa.

Auteurs : Qingzhang Du [République populaire de Chine] ; Baohua Xu ; Wei Pan ; Chenrui Gong ; Qingshi Wang ; Jiaxing Tian ; Bailian Li ; Deqiang Zhang

Source :

RBID : pubmed:24048648

Descripteurs français

English descriptors

Abstract

Lignocellulosic biomass from trees provides a renewable feedstock for biofuels, lumber, pulp, paper, and other uses. Dissecting the mechanism underlying natural variation of the complex traits controlling growth and lignocellulose biosynthesis in trees can enable marker-assisted breeding to improve wood quality and yield. Here, we combined linkage disequilibrium (LD)-based association analysis with traditional linkage analysis to detect the genetic effect of a Populus tomentosa cellulose synthase gene, PtoCesA4. PtoCesA4 is strongly expressed in developing xylem and leaves. Nucleotide diversity and LD in PtoCesA4, sampled from the P. tomentosa natural distribution, revealed that PtoCesA4 harbors high single nucleotide polymorphism (SNP) diversity (πT = 0.0080 and θw = 0.0098) and low LD (r(2) ≥ 0.1, within 1400 bp), demonstrating that the potential of a candidate-gene-based LD approach in understanding the molecular basis underlying quantitative variation in this species. By combining single SNP, multi-SNP, and haplotype-based associations in an association population of 460 individuals with single SNP linkage analysis in a family-based linkage populations (1200 individuals), we identified three strong associations (false discovery rate Q < 0.05) in both populations. These include two nonsynonymous markers (SNP49 associated with α-cellulose content and SNP59 associated with fiber width) and a noncoding marker (SNP18 associated with α-cellulose content). Variation in RNA transcript abundance among genotypic classes of SNP49 was confirmed in these two populations. Therefore, combining different methods allowed us to examine functional PtoCesA4 allelic variation underlying natural variation in complex quantitative traits related to growth and lignocellulosic biosynthesis.

DOI: 10.1534/g3.113.007724
PubMed: 24048648
PubMed Central: PMC3815066


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Allelic variation in a cellulose synthase gene (PtoCesA4) associated with growth and wood properties in Populus tomentosa.</title>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Baohua" sort="Xu, Baohua" uniqKey="Xu B" first="Baohua" last="Xu">Baohua Xu</name>
</author>
<author>
<name sortKey="Pan, Wei" sort="Pan, Wei" uniqKey="Pan W" first="Wei" last="Pan">Wei Pan</name>
</author>
<author>
<name sortKey="Gong, Chenrui" sort="Gong, Chenrui" uniqKey="Gong C" first="Chenrui" last="Gong">Chenrui Gong</name>
</author>
<author>
<name sortKey="Wang, Qingshi" sort="Wang, Qingshi" uniqKey="Wang Q" first="Qingshi" last="Wang">Qingshi Wang</name>
</author>
<author>
<name sortKey="Tian, Jiaxing" sort="Tian, Jiaxing" uniqKey="Tian J" first="Jiaxing" last="Tian">Jiaxing Tian</name>
</author>
<author>
<name sortKey="Li, Bailian" sort="Li, Bailian" uniqKey="Li B" first="Bailian" last="Li">Bailian Li</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24048648</idno>
<idno type="pmid">24048648</idno>
<idno type="doi">10.1534/g3.113.007724</idno>
<idno type="pmc">PMC3815066</idno>
<idno type="wicri:Area/Main/Corpus">002460</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002460</idno>
<idno type="wicri:Area/Main/Curation">002460</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002460</idno>
<idno type="wicri:Area/Main/Exploration">002460</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Allelic variation in a cellulose synthase gene (PtoCesA4) associated with growth and wood properties in Populus tomentosa.</title>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Baohua" sort="Xu, Baohua" uniqKey="Xu B" first="Baohua" last="Xu">Baohua Xu</name>
</author>
<author>
<name sortKey="Pan, Wei" sort="Pan, Wei" uniqKey="Pan W" first="Wei" last="Pan">Wei Pan</name>
</author>
<author>
<name sortKey="Gong, Chenrui" sort="Gong, Chenrui" uniqKey="Gong C" first="Chenrui" last="Gong">Chenrui Gong</name>
</author>
<author>
<name sortKey="Wang, Qingshi" sort="Wang, Qingshi" uniqKey="Wang Q" first="Qingshi" last="Wang">Qingshi Wang</name>
</author>
<author>
<name sortKey="Tian, Jiaxing" sort="Tian, Jiaxing" uniqKey="Tian J" first="Jiaxing" last="Tian">Jiaxing Tian</name>
</author>
<author>
<name sortKey="Li, Bailian" sort="Li, Bailian" uniqKey="Li B" first="Bailian" last="Li">Bailian Li</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Association Studies (MeSH)</term>
<term>Genetic Loci (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Glucosyltransferases (classification)</term>
<term>Glucosyltransferases (genetics)</term>
<term>Haplotypes (MeSH)</term>
<term>Lignin (biosynthesis)</term>
<term>Linkage Disequilibrium (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Leaves (enzymology)</term>
<term>Plant Proteins (classification)</term>
<term>Plant Proteins (genetics)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Wood (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allèles (MeSH)</term>
<term>Bois (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Déséquilibre de liaison (MeSH)</term>
<term>Feuilles de plante (enzymologie)</term>
<term>Glucosyltransferases (classification)</term>
<term>Glucosyltransferases (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Haplotypes (MeSH)</term>
<term>Lignine (biosynthèse)</term>
<term>Locus génétiques (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (classification)</term>
<term>Protéines végétales (génétique)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Études d'associations génétiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Glucosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Glucosyltransferases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glucosyltransferases</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bois</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Base Sequence</term>
<term>Genes, Plant</term>
<term>Genetic Association Studies</term>
<term>Genetic Loci</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Haplotypes</term>
<term>Linkage Disequilibrium</term>
<term>Molecular Sequence Data</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Polymorphism, Single Nucleotide</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Données de séquences moléculaires</term>
<term>Déséquilibre de liaison</term>
<term>Gènes de plante</term>
<term>Génotype</term>
<term>Haplotypes</term>
<term>Locus génétiques</term>
<term>Phylogenèse</term>
<term>Phénotype</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Séquence nucléotidique</term>
<term>Variation génétique</term>
<term>Études d'associations génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignocellulosic biomass from trees provides a renewable feedstock for biofuels, lumber, pulp, paper, and other uses. Dissecting the mechanism underlying natural variation of the complex traits controlling growth and lignocellulose biosynthesis in trees can enable marker-assisted breeding to improve wood quality and yield. Here, we combined linkage disequilibrium (LD)-based association analysis with traditional linkage analysis to detect the genetic effect of a Populus tomentosa cellulose synthase gene, PtoCesA4. PtoCesA4 is strongly expressed in developing xylem and leaves. Nucleotide diversity and LD in PtoCesA4, sampled from the P. tomentosa natural distribution, revealed that PtoCesA4 harbors high single nucleotide polymorphism (SNP) diversity (πT = 0.0080 and θw = 0.0098) and low LD (r(2) ≥ 0.1, within 1400 bp), demonstrating that the potential of a candidate-gene-based LD approach in understanding the molecular basis underlying quantitative variation in this species. By combining single SNP, multi-SNP, and haplotype-based associations in an association population of 460 individuals with single SNP linkage analysis in a family-based linkage populations (1200 individuals), we identified three strong associations (false discovery rate Q < 0.05) in both populations. These include two nonsynonymous markers (SNP49 associated with α-cellulose content and SNP59 associated with fiber width) and a noncoding marker (SNP18 associated with α-cellulose content). Variation in RNA transcript abundance among genotypic classes of SNP49 was confirmed in these two populations. Therefore, combining different methods allowed us to examine functional PtoCesA4 allelic variation underlying natural variation in complex quantitative traits related to growth and lignocellulosic biosynthesis. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24048648</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>Allelic variation in a cellulose synthase gene (PtoCesA4) associated with growth and wood properties in Populus tomentosa.</ArticleTitle>
<Pagination>
<MedlinePgn>2069-84</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.113.007724</ELocationID>
<Abstract>
<AbstractText>Lignocellulosic biomass from trees provides a renewable feedstock for biofuels, lumber, pulp, paper, and other uses. Dissecting the mechanism underlying natural variation of the complex traits controlling growth and lignocellulose biosynthesis in trees can enable marker-assisted breeding to improve wood quality and yield. Here, we combined linkage disequilibrium (LD)-based association analysis with traditional linkage analysis to detect the genetic effect of a Populus tomentosa cellulose synthase gene, PtoCesA4. PtoCesA4 is strongly expressed in developing xylem and leaves. Nucleotide diversity and LD in PtoCesA4, sampled from the P. tomentosa natural distribution, revealed that PtoCesA4 harbors high single nucleotide polymorphism (SNP) diversity (πT = 0.0080 and θw = 0.0098) and low LD (r(2) ≥ 0.1, within 1400 bp), demonstrating that the potential of a candidate-gene-based LD approach in understanding the molecular basis underlying quantitative variation in this species. By combining single SNP, multi-SNP, and haplotype-based associations in an association population of 460 individuals with single SNP linkage analysis in a family-based linkage populations (1200 individuals), we identified three strong associations (false discovery rate Q < 0.05) in both populations. These include two nonsynonymous markers (SNP49 associated with α-cellulose content and SNP59 associated with fiber width) and a noncoding marker (SNP18 associated with α-cellulose content). Variation in RNA transcript abundance among genotypic classes of SNP49 was confirmed in these two populations. Therefore, combining different methods allowed us to examine functional PtoCesA4 allelic variation underlying natural variation in complex quantitative traits related to growth and lignocellulosic biosynthesis. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Qingzhang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Baohua</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gong</LastName>
<ForeName>Chenrui</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Qingshi</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Jiaxing</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Bailian</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>KC762249</AccessionNumber>
<AccessionNumber>KC762250</AccessionNumber>
<AccessionNumber>KC762251</AccessionNumber>
<AccessionNumber>KC762252</AccessionNumber>
<AccessionNumber>KC762253</AccessionNumber>
<AccessionNumber>KC762254</AccessionNumber>
<AccessionNumber>KC762255</AccessionNumber>
<AccessionNumber>KC762256</AccessionNumber>
<AccessionNumber>KC762257</AccessionNumber>
<AccessionNumber>KC762258</AccessionNumber>
<AccessionNumber>KC762259</AccessionNumber>
<AccessionNumber>KC762260</AccessionNumber>
<AccessionNumber>KC762261</AccessionNumber>
<AccessionNumber>KC762262</AccessionNumber>
<AccessionNumber>KC762263</AccessionNumber>
<AccessionNumber>KC762264</AccessionNumber>
<AccessionNumber>KC762265</AccessionNumber>
<AccessionNumber>KC762266</AccessionNumber>
<AccessionNumber>KC762267</AccessionNumber>
<AccessionNumber>KC762268</AccessionNumber>
<AccessionNumber>KC762269</AccessionNumber>
<AccessionNumber>KC762270</AccessionNumber>
<AccessionNumber>KC762271</AccessionNumber>
<AccessionNumber>KC762272</AccessionNumber>
<AccessionNumber>KC762273</AccessionNumber>
<AccessionNumber>KC762274</AccessionNumber>
<AccessionNumber>KC762275</AccessionNumber>
<AccessionNumber>KC762276</AccessionNumber>
<AccessionNumber>KC762277</AccessionNumber>
<AccessionNumber>KC762278</AccessionNumber>
<AccessionNumber>KC762279</AccessionNumber>
<AccessionNumber>KC762280</AccessionNumber>
<AccessionNumber>KC762281</AccessionNumber>
<AccessionNumber>KC762282</AccessionNumber>
<AccessionNumber>KC762283</AccessionNumber>
<AccessionNumber>KC762284</AccessionNumber>
<AccessionNumber>KC762285</AccessionNumber>
<AccessionNumber>KC762286</AccessionNumber>
<AccessionNumber>KC762287</AccessionNumber>
<AccessionNumber>KC762288</AccessionNumber>
<AccessionNumber>KC762289</AccessionNumber>
<AccessionNumber>KC762290</AccessionNumber>
<AccessionNumber>KC762291</AccessionNumber>
<AccessionNumber>KC762292</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C478648">cellulose synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="Y">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056726" MajorTopicYN="N">Genetic Association Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056426" MajorTopicYN="N">Genetic Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006239" MajorTopicYN="N">Haplotypes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus tomentosa</Keyword>
<Keyword MajorTopicYN="N">RNA transcript analysis</Keyword>
<Keyword MajorTopicYN="N">linkage analysis</Keyword>
<Keyword MajorTopicYN="N">linkage disequilibrium</Keyword>
<Keyword MajorTopicYN="N">multi-locus association models</Keyword>
<Keyword MajorTopicYN="N">single nucleotide polymorphism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24048648</ArticleId>
<ArticleId IdType="pii">g3.113.007724</ArticleId>
<ArticleId IdType="doi">10.1534/g3.113.007724</ArticleId>
<ArticleId IdType="pmc">PMC3815066</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2513255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 May;188(1):197-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21385726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 3;465(7298):627-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 1975 Apr;7(2):256-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1145509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):890-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22129444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Mar;133(3):693-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8454210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Dec;171(4):2029-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16157674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11562485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22052017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Jan;175(1):399-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Apr;190(4):1503-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22271763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Jan;29(1):81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2007;8:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17626638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 May;14(5):248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19375973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19159482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(4):717-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17605757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):786-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(5):730-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 Aug;284(2):105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20577761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jul;9(7):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Nov;71(4-5):509-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19697141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Sep;39(9):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17676040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 29;316(5833):1840-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Aug;21(8):2194-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19654263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(2):515-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 6;284(6):3833-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Feb 2;3(2):e22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17274688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 May;6(5):e1000940</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2442-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15699350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Sep;20(9):1377-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22861491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Apr;39(4):529-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17384641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:53-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Aug;62(13):4495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21617247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Nov;171(3):1257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Nov;183(3):1153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2281-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19585-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2008;8:307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Nov 15;14(22):3539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16210379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):224-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e53116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Dec 12;19(18):2496-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jan;5(1):e1000331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):526-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20122131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Feb;197(3):763-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23278184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15932943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):E864-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3158-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jul;43(2):273-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Psychiatry. 2012;2:e104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22832904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Aug;182(4):1289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19487566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Feb;38(2):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Aug;187(3):777-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20546138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1968 Jun;38(6):226-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24442307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Oct;186(2):677-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20628037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19250529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2005 Mar;76(3):449-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15700229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22392991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):596-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22680066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Mar;189(4):909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21182529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Aug;185(4):1477-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(1):162-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23157484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 24;306(5705):2206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2012 Nov-Dec;103(6):853-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23008443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17188-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jun;22(6):495-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10886769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Gong, Chenrui" sort="Gong, Chenrui" uniqKey="Gong C" first="Chenrui" last="Gong">Chenrui Gong</name>
<name sortKey="Li, Bailian" sort="Li, Bailian" uniqKey="Li B" first="Bailian" last="Li">Bailian Li</name>
<name sortKey="Pan, Wei" sort="Pan, Wei" uniqKey="Pan W" first="Wei" last="Pan">Wei Pan</name>
<name sortKey="Tian, Jiaxing" sort="Tian, Jiaxing" uniqKey="Tian J" first="Jiaxing" last="Tian">Jiaxing Tian</name>
<name sortKey="Wang, Qingshi" sort="Wang, Qingshi" uniqKey="Wang Q" first="Qingshi" last="Wang">Qingshi Wang</name>
<name sortKey="Xu, Baohua" sort="Xu, Baohua" uniqKey="Xu B" first="Baohua" last="Xu">Baohua Xu</name>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002803 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002803 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24048648
   |texte=   Allelic variation in a cellulose synthase gene (PtoCesA4) associated with growth and wood properties in Populus tomentosa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24048648" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020